

6th Commercial Spaceport Summit Report

November 10-12, 2020 2:00 PM – 4:00 PM Eastern Time Each Day

Thanks to Summit Title Sponsor:

Summit Co-Sponsors:

Table of Contents

Commercial Spaceport Summit 2020: Executive Summary	3
Roster of Participants	7
AGENDA	10
GSA Member Organizations	13
Dr. Janet Karavala Slides	Addendum A
Working Group Reports Day 1	Addendum B
Working Group Reports Day 2	Addendum C
Dr. Melchor Antunano Slides	Addendum D
Working Group Reports Day 3	Addendum E

Commercial Spaceport Summit 2020

Executive Summary

Due to COVID-19, the GSA's Commercial Spaceport Summit 2020 was held as a virtual event across three days. Each day had a theme and featured two keynote speakers. In addition, the GSA members and GSA Working Group Chairs were able to give a brief update of their activities.

Recordings of Day 1 and Day 3 of the Summit are available on the GSA website at <u>www.globalspaceportalliance.com</u>. Unfortunately, Day 2's recording was lost due to a service provider error.

The following is a summary of each day of the GSA Summit.

DAY 1, November 10, 2020: State of the Industry

The 6^h Annual Commercial Spaceport Summit of the Global Spaceport Alliance (GSA) was convened on the first of three days of sessions at 2:00 PM Eastern Time with opening remarks from James Causey, Dr. George Nield, and Richard Rogers of RS&H, the event title sponsor.

The Summit had attendance from every GSA member!

The opening Keynote Address was given by Jim Bridenstine, NASA Administrator on the topic "Spaceports and NASA Needs." He talked about the importance of the emerging commercial spaceport community as related to the future of NASA's capabilities. Further, he mentioned that NASA is eager to support those developments. He shared an update on the Artemis program and how the commercial sector is partnering to achieve its goals. Some of the main takeaways include:

- NASA has built a strong track record of partnering with the private sector with the Commercial Resupply, Commercial Crew programs, and the CLPS lunar robotics program. Taking that further are the Axiom partnership to bring private citizens to the ISS and eventually a free flyer habitat. This all drives the commercial marketplace in LEO and eventually on the Moon.
- NASA is very interested in use of suborbital capabilities for human tended experiments as an important new initiative that could have implications for commercial spaceports.
- He announced that Senate Appropriation bill includes funding for NASA at \$23.5 Billion.

Brief updates were provided by GSA Members, including Alcântara Launch Center, Arizona Spaceport Alliance, Brownsville UTRGV's CARA/STARGATE, Cecil Spaceport, Colorado Air and Space Port, Corgan, Ecuador Spaceport, Houston Spaceport, Xarc/Astroport Space Technologies, Inc. and Spire Global.

The second keynote address of the day was given by Dr. Janet Kavandi, Executive Vice President, Sierra Nevada Corporation, on the topic of "An Industry Perspective" [Addendum A]. Some of the main takeaways included:

- SNC Dream Chaser will carry up to 12,000 lbs. of cargo to ISS and other LEO destinations
- First Dream Chaser ISS resupply mission will be in 2021 with total of 7 missions planned
- No firm plan yet for human rated Dream Chaser, but SNC will be involved in next round of NASA bids for Commercial Crew contract
- Human-rated Dream Chaser would carry up to 7 passengers
- Dream Chaser can land on any 10,000-foot runway in the US and abroad
- SNC is working with the United Nations to purchase Dream Chaser flights that would allow UN Members to fly experiments in space

Two GSA Working Groups reported on their activities [Addendum B]. Oscar Garcia, Chairman & CEO, High Speed Flight-Fast Forward Group reported on Point-to-Point Transportation Working Group; and Dave Ruppel, Director, Air and Space Port, Colorado Air and Space Port reported on the Space Support Vehicles Working Group.

Day 1 sessions adjourned at 4:00 PM Eastern Time.

DAY 2, November 11, 2020: Infrastructure & Funding

The second day of the GSA Summit was opened with remarks by Paulo Eduardo Vasconcellos of the Brazilian Space Agency, a Summit sponsor. The opening keynote was given by Ken Hodgkins, President of International Space Enterprise Consultants (ISEC) and former Director, Office of Space and Advanced Technology, U.S. Department of State. Ken spoke on the topic of "International Cooperation." Some of the key takeaways from this talk include:

- There needs to be fair practice guidelines for all spaceports worldwide including:.
 - Transparency
 - Predictability
 - Interoperability
 - A fair governance environment
 - Recognition of the importance of sustainability of the space environment
- P2P will be critical
- There are already five International Space treaties in place that can provide guidance

Brief updates were provided by members, including Air Liquide, Grazzanise Spaceport, Kodiak Launch Complex/Pacific Spaceport Complex, RS&H, Michigan Space Launch Initiative, Oklahoma Air and Space Port, Rice Space Institute, Santa Maria Spaceport, Space Florida/Cape Canaveral Spaceport, Space Port Japan, and High Speed Flight-Fast Forward Group. The second keynote speaker of the day Stuart Witt, former head of Mojave Air and Space Port, who spoke on the topic "Where Are We Headed?" Some of the key takeaways from this talk included:

- Spaceports need to be adept at modifying their busines plans to fit their local setting
- Spaceports needs to consider an array of revenue streams beyond launch related activities
 - Storage & handling of exotic fuels for any launch vehicles
 - o Ground station capability that could have commercial applications
 - Provision of Earth observation data and handling
 - Weather forecasting
 - Potential for beaming solar power from satellites to the ground

Two GSA Working Groups reported on their activities [Addendum C]. Les Lake, Space Systems Representative, Teledyne Brown Engineering reported on the activities of the Spaceport Infrastructure Funding Working Group. Francisco Partida, Special Projects Manager, Brownsville South Padre Island International Airport reported on the activities of the Communicating the Value of Space to Regional Economies Working Group.

Day 2 sessions adjourned at 4:00 PM Eastern Time.

DAY 3, November 12, 2020: Planning for the Future

The third day opened with welcoming remarks by Bill Conway, CEO of WDSS International, and GSA Summit sponsor. The program began with a keynote talk by Melchor Antunano, MD, Director, Civil Aerospace Medical Institute, Federal Aviation Administration, who spoke on the topic "Human Spaceflight Research" [Addendum D]. Some of takeaways from Dr. Antunano's presentation include:

- We have limited knowledge of the impact of space on the human physiology across a spectrum of people of varying health and mental capabilities
 this needs to change to permit significant regular space travel
- Spaceports must consider the health and medical emergencies of spectators
- The key for human spaceflight is the medical waiver process
- MITRE Corp is seeking to implement a health data collection program for space tourism and other activities
- Stakeholders sharing medical data will become very important

Brief updates were given by members, including Spaceport America, Spaceport Camden, Spaceport Cornwall, Stennis Spaceport, Taiwan Innovative Space, Inc., The Aerospace Corporation, Waco Spaceport, Weather Decision Support Systems International, YUMA Spaceport, and Commercial Space Progress Foundation

The final keynote of the GSA Summit was Jo-Anne Sears, Partner, Velocity Government Relations who addressed the topic "The View from Capitol Hill." Some of the key takeaways from Ms. Sears' talk included:

• The Biden Administration will put greater emphasis on Earth observation and climate change research when it comes to spending on the space program, and possibly less on Moon and Mars exploration. They are not expected to cancel the Artemis Moon project.

- In communicating with Biden's team, GSA should stress how spaceports would support their climate change agenda
- The election loss of Rep. Kendra Horn and other pro-space moderate democrats was a blow for the space program. More progressive influences in the House could dampen progress in space.
- International partnerships will remain important and play well with the international nature of the GSA membership and vision
- The message of how spaceports support local economies resonates with the Hill.
- Now is good time to reach out to House and Senate Members and staff who have spaceports in their districts/states these are the natural allies

Charles 'Chas' Miller, Spaceport Engineer, Spaceport America reported on the activities and recommendations of the GSA Working Group on Academic Partnerships provides [Addendum E].

To wrap up the day and the conference, James Causey reviewed the planning for 2021 and beyond. These plans include the following expanded member benefits:

- Updated Website
- Update and re-issue the National Spaceport Network Development Plan
- Publish 6 e-Newsletters
- Host 6 webinars
- Maintain Existing Working Groups
- Add 2 New Working Groups
 - Defining supply chain models for spaceports
 - Estimating launch demand for the future
- Provide discounts on SpaceCom related activities

With regard to general operations, the GSA will take these actions in the coming year:

- Grow the number of members and associate members
- Grow the academic and non-profit member category
- Expand the Board of Advisors
- Build an international supplier database

The GSA Summit adjourned at 4:00 PM Eastern Time.

6th COMMERCIAL SPACEPORT SUMMIT

November 10-12, 2020

Roster of Participants

Chairman, Global Spaceport Alliance

Dr. George C. Nield, President, Commercial Space Technologies, LLC (former FAA Associate Administrator, Office of Commercial Space Transportation)

GSA Member Spaceports:

Alcântara Launch Center
Paulo Eduardo Vasconcellos, Director Strategic Intelligence and New Business, Brazilian Space Agency
Michele Melo, Advisor of Strategic Intelligence and New Business, Brazilian Space Agency
Arizona Spaceport Alliance
Benjamin Hernandez, Founder
Karyn MacVean, Founder
Brownsville South Padre Island International Airport
Francisco Partida, Special Projects Manager, City of Brownsville
Dr. Frederick Jenet, Director, Expanding Frontiers
Cecil Spaceport
Todd Lindner, Director
Bob Lewan, Deputy Director
Colorado Air and Space Port
David Ruppel, Director
Ecuador Spaceport
Robert Aillon, Founder, Leviathan Space Industries LLC
Grazzanise Spaceport and related Suborbital Test Polygon
Gennaro Russo, Project Manager, Suborbital Experimental Polygon
Claudio Voto, Material & Process Development Manager at Alenia Aeronautica, Campania Aerospace
District
Hancock County Port and Harbor
Chanse Watson, Director, Stennis International Airport
Houston Spaceport
Jimmy Spence, Senior Marketing/Business Development Specialist, Houston Airport System
Dwayne Busby, Exec. Director of Strategic Partnerships, University of Houston-Clear Lake
Kodiak Launch Complex/Pacific Spaceport Complex
Mark Lester, Government, Alaska Aerospace Corporation
Michigan Space Launch Initiative
Gavin Brown, Executive Director, Michigan Aerospace Manufacturers Association
Michael Dudzik, President, IQM Research Institute
James Miles, Vice-President, IQM Research Institute
Michael Price, Michigan Space Launch Initiative
Oklahoma Air and Spaceport

	Craig Smith, Executive Director, OSIDA - Oklahoma Space Industry Development Authority
	Santa Maria Spaceport
	Ricardo Conde, Board Member, Portugal Space
	Hugo Costa, Board Member, Portugal Space
	Space Florida/Cape Canaveral Spaceport
	Dale Ketcham, VP Government & External Relations, Space Florida
	Jim Kuzma, EVP, General Manager, Space Florida
	Sinianne Pierce, Federal Government Relations Director, Space Fiorida
	Space Port Japan Association Shinichi Takata, Director
	Similari Takala, Director Naoko Yamazaki Co Founder Spaco Port Japan
	Hidetaka Aoki Director Space Port Japan Association
	Spacenort America
	Scott McLaughlin Spaceport Engineer
	Chas Miller, Spaceport Engineer
	Spaceport Azores/Portugal
	Luis Santos, Spaceport Azores
	Spaceport Camden
	Steve Howard, Camden County Administrator and Spaceport Camden Project Leader, Camden County
	Andrew Nelson, Consultant, Spaceport Camden
	Spaceport Cornwall
	Mandy Cosgrove, Project Support Officer, Spaceport Cornwall
	Ross Hulbert, Business Engagement Manager, Spaceport Cornwall
	Adam Paynter, Leader, Cornwall Council
	David Pollard, Education and Outreach Manager, Spaceport Cornwall
	Melissa Thorpe, Head of Marketing and Communications, Spaceport Cornwall
	TSTC Waco Airport
	Jessica Attas, Director of Public Policy Greater Waco Chamber,
	Kevin Semien, , TSTC Waco Airport
	Yuma Spaceport
	Julie Engel, Chief Economic Architect, Great YUMA EDC
GSA As	sociate Members:
	Air Liquide
	Annika Bergman, Growth Strategy Director Americas
	Chad Nickell, Director, Space Strategic Business Unit
	Corgan
	Francis Walker, Director
	Cherie Matthew, Project Manager, Senior Associate
	RS&H
	Rick Rogers, Spaceport Leader
	Alex Anderson, Mechanical Engineer
	Spire Global
	William Cromarty, Federal Account Executive
	Ashley O'Neill, Federal Account Executive
	WDSS International
	Bill Conway, CEO
	XArc Exploration Architecture Corp
	Sam Ximenes, Chief Executive Officer

GSA Nonprofit Members:

FAA Center of Excellence for Commercial Space Transportation - NMSU

Patricia Hynes, Director, FAA Center of Excellence for Commercial Space Transportation - NMSU

High Speed Flight-Fast Forward Group

Oscar Garcia, Chairman & CEO, High Speed Flight-Fast Forward Group Yvette Garcia Bordes, Partner, InterFlight Global Corporation

Rice University

David Alexander, Director, Rice Space Institute, Rice University Mark Jernigan, Associate Director for Special Projects , Rice University The Aerospace Corporation

Deborah Babbitt, Sr Project Leader, The Aerospace Corporation Rich Lamb, Systems Director, The Aerospace Corporation

Other Attendees:

Stephan Reckie, Executive Director, GEN - Space Les Lake, Space Systems Representative, Teledyne Brown Engineering Irene Klotz, Journalist, Aviation Week & Space Technology Jeff Foust, Journalist, Space News

Guest Speakers:

Melchor Antunano, Director, Civil Aerospace Medical Institute, Federal Aviation Administration Jim Bridenstine, Administrator, NASA Ken Hodgkins, President, International Space Enterprise Consultants Dr. Janet Kavandi, Executive Vice President, Space Systems, Sierra Nevada Corp. Jo-Anne Sears, Partner, Velocity Government Relations Stuart Witt, Principal, S. O. Witt & Associates

Government:

FAA Office of Commercial Space Transportation

 Ken Gidlow, Technical Advisor
 Wendy Gehring, Administration Manager

 U.S. Department of State

 Dr. Robert Johnson, Senior Advisor, Space & Advanced Technology

GSA Staff

James Causey, Executive Director, Global Spaceport Alliance Steve Wolfe, Deputy Executive Director, Global Spaceport Alliance

6th Annual Commercial Spaceport Summit

November 10-12, 2020 Virtual via GoToMeeting

AGENDA

State of the Industry

November 10, 2:	00 PM – 4:00 PM Eastern Time
2:00 PM	 Welcome and Introduction JAMES CAUSEY, Executive Director, Global Spaceport Alliance Sponsor Message: RICHARD ROGERS, RS&H DR. GEORGE C. NIELD, President, Commercial Space Technologies, LLC
2:10 PM	Keynote: "Spaceports and NASA Needs" JIM BRIDENSTINE, NASA Administrator
2:40 PM	 Member Updates Alcântara Launch Center Paulo Eduardo Vasconcellos, Brazilian Space Agency Arizona Spaceport Alliance Benjamin Hernandez, Keyser: Arizona Spaceport Alliance Brownsville UTRGV'S CARA/STARGATE Dr. Frederick Jenet, Expanding Frontiers Cecil Spaceport Todd Lindner, Jacksonville Aviation Authority Colorado Air and Space Port Dave Ruppel, Colorado Air and Space Port Corgan Cherie Matthew, Corgan Ecuador Spaceport Robert Aillon, Leviathan Space Industries LLC Houston Spaceport Jimmy Spence, Houston Airport System Xarc/Astroport Space Technologies, Inc. Sam Ximenes, Exploration Architecture Corp Spire Global William Cromarty, Spire Global

3:10 PM	Featured Speaker: "An Industry Perspective"
	DR. JANET KAVANDI, Executive Vice President, Space Systems, Sierra Nevada Corp. and
	Former NASA Astronaut and Center Director
3:40 PM	Working Group Reports
	Point-to-Point Transportation
	Oscar Garcia, Chairman & CEO, High Speed Flight-Fast Forward Group
	• Space Support Vehicles
	Dave Ruppel, Director, Air and Space Port, Colorado Air and Space Port
4:00 PM	Adjourn for day

Infrastructure & Funding November 11, 2:00 PM – 4:00 PM Eastern Time

2:00 PM	Welcome and Introduction
	JAMES CAUSEY, Executive Director, Global Spaceport Alliance
	Sponsor Message: PAULO EDUARDO VASCONCELLOS, Brazilian Space Agency
2:10 PM	Keynote: "International Cooperation"
	KEN HODGKINS, President of International Space Enterprise Consultants (ISEC) and
	former Director, Office of Space and Advanced Technology, U.S. Department of State
2:40 PM	Member Updates
	Air Liquide
	Chad Nickell, Air Liquide
	Grazzanise Spaceport
	Gennaro Russo, Suborbital Experimental Polygon
	Kodiak Launch Complex/Pacific Spaceport Complex
	Mark Lester, Alaska Aerospace Development Corporation
	• RS&H
	Rick Rogers, RS&H
	Michigan Space Launch Initiative
	Gavin Brown, Michigan Aerospace Manufacturers Association
	Oklahoma Air and Space Port
	Craig Smith, Oklahoma Space Industry Development Authority
	Rice Space Institute
	David Alexander. Rice University
	Santa Maria Spaceport
	Hugo Costa. Portugal Space
	Space Florida/Cape Canaveral Spaceport
	Jim Kuzma, Space Florida
	Space Port Japan
	Shinichi Takata, Space Port Japan Association
	High Speed Flight-Fast Forward Group
	Oscar Garcia. High Speed Flight-Fast Forward Group
3:10 PM	Featured Speaker: "Where Are We Headed?"
	STUART WITT, former head of Mojave Air and Space Port

3:40 PM	Working Group Reports
	 Spaceport Infrastructure Funding Les Lake, Space Systems Representative, Teledyne Brown Engineering Communicating the Value of Space to Regional Economies Francisco Partida, Special Projects Manager, Brownsville South Padre Island International Airport
4:00 PM	Adjourn for day

Planning for the Future November 12, 2:00 PM – 4:00 PM Eastern Time

2:00 PM	Welcome and Introduction
	JAMES CAUSEY, Executive Director, Global Spaceport Alliance
	Sponsor Message: BILL CONWAY, CEO, WDSS International
2:10 PM	Keynote: "Human Spaceflight Research"
	MELCHOR ANTUNANO, MD, Director, Civil Aerospace Medical Institute, Federal Aviation
	Administration
2:40 PM	Member Updates
	Spaceport America
	Scott McLaughlin, Spaceport America
	Spaceport Camden
	Steve Howard, Camden County
	Spaceport Cornwall
	Melissa Thorpe, Spaceport Cornwall
	Stennis Spaceport
	Chanse Watson, Hancock County Port and Harbor
	Taiwan Innovative Space, Inc.
	Ting Chang, Taiwan Innovative Space, Inc.
	The Aerospace Corporation
	Rich Lamb, The Aerospace Corporation
	Waco Spaceport
	Jessica Attas, Waco Chamber of Commerce
	Weather Decision Support Systems International
	Bill Conway, WDSS International
	YUMA Spaceport
	Julie Engel, Greater YUMA EDC
	Commercial Space Progress Foundation
	Patricia Hynes, New Mexico State University
3:10 PM	Featured Speaker: "The View from Capitol Hill"
	JO-ANNE SEARS, Partner, Velocity Government Relations
3:40 PM	Working Group Report on Academic Partnerships
	 Charles 'Chas' Miller, Spaceport Engineer, Spaceport America
3:50 PM	GSA Plans for 2021 and Beyond
4:00 PM	Summit Adjourns

GLOBAL SP/CEPORT ALLIANCE

GSA Member Organizations

GSA Member Spaceports:

- 1. Alcântara Launch Center
- 2. Arizona Spaceport Alliance
- 3. Brownsville South Padre Island International Airport
- 4. Cecil Spaceport
- 5. Colorado Air and Space Port
- 6. Ecuador Spaceport
- 7. Grazzanise Spaceport
- 8. Hancock County Port and Harbor
- 9. Houston Spaceport
- 10. Kodiak Launch Complex/Pacific Spaceport Complex
- 11. Michigan Space Launch Initiative
- 12. Oklahoma Air and Spaceport
- 13. Santa Maria Spaceport
- 14. Space Florida/Cape Canaveral Spaceport
- 15. Space Port Japan Association
- 16. Spaceport America
- 17. Spaceport Camden
- 18. Spaceport Cornwall
- 19. TSTC Waco Airport
- 20. Yuma Spaceport

GSA Associate Members:

- 21. Air Liquide
- 22. Corgan
- 23. RS&H
- 24. Spire Global
- 25. Taiwan Innovative Space, Inc.
- 26. WDSS International
- 27. XArc Exploration Architecture Corp

GSA Nonprofit Members:

- 28. FAA Center of Excellence for Commercial Space Transportation NMSU
- 29. High Speed Flight-Fast Forward Group
- 30. Rice University
- 31. The Aerospace Corporation

She

Sierra Nevada Corporation PRIVATELY OWNED & OPERATED

- Est. 1963, current ownership since 1994
 Culture of developing innovative technological solutions in a rapid & agile production arguingment environment
- Space, aviation, defense A new breed of prime integrator (80% from U.S. gov't direct)
- CORPORATE HEADQUARTERS: SPARKS, NEVADA
- Supports business areas, subsidiaries & affiliates with nearly 5,000 personnel at 34 facilities Facilities in 19 U.S. states, England, Germany and Turkey

Space Systems

Proven heritage; extensive capabilities

- More than 30 years of space flight heritage
- 450 space missions supported • 4,000 products delivered
- 70+ successful NASA missions
- . Launching ~every 3 weeks . Space relationships in more than 20
- countries Certified to all three industry quality and safety standards Trusted provider of advanced space .
- technologies for critical "can't fail" missions

DREAM CHASER® SPACEPLANE OVERVIEW DREAM CHASER CONOPS VIDEO Current Dream Chaser missions include a CRS-2 contract with NASA for at least six missions to the International Space Station. . SNC has an agreement with the United Nations in which Dream Chaser would be used as science lab circling Earth. As a winged, reusable, and sustainable vehicle, Dream Chaser enables a diverse range of future space capabilities, including: free-flying space missions, support to commercial destinations, satellite servicing, crewed missions, remotesensing, and more.

SHOOTING STAR™ TRANSPORT VEHICLE

- A flexible 15-foot transport vehicle that will be used as an attachment to the Dream Chaser, but also has other applications such as a freeflying spacecraft.
- Can carry up to 10,000lbs of pressurized & unpressurized cargo.
- Berthing and docking capabilities.
- Safe cargo disposal service upon re-entry.

LIFE™ НАВІТАТ РКОТОТУРЕ

- NextSTEP-2 Appendix A: Development of a full-scale Lunar Gateway architecture Habitat System prototype to support a crew of four.
- Habitat prototype delivered to NASA's Johnson Space Center in May 2019.
- NASA extending contract for one year for additional prototyping & test.

HUMAN LANDING SYSTEM

- SNC is leading the crew module development for NASA's Human Landing System (HLS) program.
- · We are a subcontractor to Dynetics.
- Crew module will ferry astronauts and cargo to and from the moon's surface.
- We are currently integrating a mockup of the module at our facilities in Louisville, CO, which will be delivered to Johnson Space Center for testing at the end of November.

She

She

VEGGIE & ADVANCED PLANET HABITAT

- SNC has two Veggie systems successfully growing vegetables for astronauts on the International Space Station.
- Plants include lettuce, Chinese cabbage, Mizuna, Kale, and Zinnias.
- The Advanced Plant Habitat is used for plant research in microgravity and can be operated by scientists on Earth.
- There are nearly 200 sensors keeping track of information like plant water intake, planet development and CO₂ levels.

SHC

VORTEX ENGINE

- VORTEX engines use a swirling propellant flow system to cool the engine walls naturally and are well suited for spacecraft and vehicle guidance and control.
- With a wide range of propellant combinations, we can offer versatility to suit the specific mission needs.
- SNC is testing new VORTEX hybrid engines that are deep throttling, restartable and can be used for national security, in-space and planetary applications.

SHE

© 2020 Sierra Nevada Corporation

SURFACE MOUNT TECHNOLOGY SOLAR PANELS

- This patented technology's innovate design allows for automated pick-and-place manufacturing for assembly, which eliminates touch labor.
- Improve power density, reduces lead time and cuts costs.
- Provides 35% more power to small satellite missions compared to what else is currently on the market.

<section-header><section-header><image>

SNC ON MARS 2020 PERSEVERANCE ROVER

- SNC has eight unique mechanisms used 17 times on Perseverance.
- They're used in the robotic arm, turret coring drill and caching assembly.
- One mechanism, the Sealing and STIG (Spindle Twin Input Gearing), helps deploy Perseverance's helicopter, which will be the first to launch on another planet.
- A separate mechanism, called the descent brake, is on the sky crane, and helps lower the rover to the surface of Mars.

SNC

She

-DOMESTIC US -INTERNATIONAL

A DENSE AND GROWING NETWORK OF SPACEPORTS -DOMESTIC US -INTERNATIONAL

<image><image><image><text><text><text><text><text>

GUIDE-WHITE PAPER

FOR <u>SPACEPORT TO</u> <u>SPACEPORT</u> FLIGHT

-TOOL: WG SURVEY

CORRIDORS

INITIAL AIRSPACE TAXONOMIES, DEFINITIONS, FEASIBILITY AND DESIGN ANALYSIS TOOLS -GUIDED BY SURVEYS RESPONSES AND INDUSTRY DATA

2

Discoveries

- GAO Study identifying issues and proposing further study.
- Current challenges with AST vs AVS
- Limitations on service providers desiring to use experimental vehicles.
- Still not allowed to use, in general for compensation or hire.
- While attempts have been made to fix this, nothing has been signed into law. § 44737. Special rule for certain aircraft operations. Public Law 115–254—Oct. 5, 2018
 H. R. 5346

Still to do—Identify...

- How to best support the FAA in resolving these issues.
- What astronaut training needs require access to SSVs.
- Service providers and accessible spaceports.
- More work to do, Working Group efforts to continue...

Communications Plan

- > Currently under development, draft is ready for GSA review and comments.
- The plan provides guidance and coordination for Spaceport operators to socialize the need for infrastructure development funds and provide details on their needs to key members of Congress.
- Will provide Congress with information and rationale necessary to support the establishment of a program for spaceport infrastructure funding to enable the safe operations of the emerging network of spaceports.

One Story - One Voice

The benefit of "one story, consistent voice" is to manage expectations, and help minimize negative reactions from stakeholders that might assume incorrect concepts of operations.

Lessons learned indicate that some stakeholders will react to informal versions of plans that are passed along to people outside of the proponent leadership group.

An additional aspect of the "one story" approach is that once it is clearly established, it provides a background upon which to evaluate future proposals. If the focal for the concept holds the story for the community, they can amend it to indicate changes or keep it unchanged to retain a desired

SPACEPORT

Recommendationsestablish advocacy relationships with key stakeholders. Buliding relationships, get everyone working towards the same goal. create and publish content and newsletters, making sure it remains consistent. Engagement and promotion. Branding the alliance / group. Using Social Media channels as a primary method of advertising, monthly or quarterly e-blast to stakeholders and entities.

Need for Commercial Spaceflight Medical Research

Presented at: GSA 6th Annual Spaceport Summit By: Melchor J. Antuñano, M.D., M.S. Director, Civil Aerospace Medical Institute Dats: November 2020

Federal Aviation

The U.S. Commercial Space Launch Amendments (CSLA) Act of 2004 (H.R. 5382)

<u>Requires space passengers to be fully</u> <u>informed about all of the potential risks of</u> <u>participating in space flights allowing them to</u> <u>fly at their own risk</u>

> Federal Aviation Administration

14 CFR Part 460, Subpart B Launch and Reentry with a Space Flight Participant

§ 460.45 Operator informing space flight participant of risk.

(a) Before receiving compensation or making an agreement to fly a space flight participant, an operator must satisfy the requirements of this section. <u>An</u> operator must inform each space flight participant in writing about the risks of the launch and reentry, including the safety record of the launch or reentry vehicle type. An operator must present this information in a manner that can be readily understood by a space flight participant with no specialized education or training, and must disclose in writing:

- (1) For each mission, each known hazard and risk that could result in a serious injury, death, disability, or total or partial loss of physical and mental function.
- (2) That there are hazards that are not known.
- (3) <u>That participation in space flight may result in death, serious injury, or total or partial loss of physical or mental function.</u>

<section-header><section-header><image><image><text><image>

We have very limited medical experience and knowledge on individuals with significant medical problems who have flown in space

Most of the medical and physiological data collected to date are based on the effects of space flight on generally normal and healthy individuals (career astronauts and cosmonauts)

Federal Aviation Administration

Federal Aviation

Federal Aviation

Federal Aviation Administration

Until now most people who have flown in space are healthy career astronauts aged 35 to 50 years old (only exception is John Glenn)

Due to medical privacy regulations and career considerations individual medical data from career astronauts is not available for study by the scientific community

What Medical Data is Available to the Public?

MEDICAL EVENT	FREQUENCY
Allergic reaction (severe)	1
Choledocholithiasis	3
Retinal detachment	2
Pancreatitis	2
Appendicitis	2
Diverticulitis	1
Ventricular tachycardia	1
Atrial fibrillation	1
Coronary artery disease	1
Hemorrhagic cyst	1
Abdominal pain	1
Duodenal ulcer	1

Inguinal hernia	4
Ureteral calculus	3
Pneumonia	2
Sudden hearing loss	2
Cervical disk herniation with impingement on spinal cord	1
Corneal ulcer	1
Malignant melanoma	1
Severe epistaxis	1
Right ovarian cyst	1
Olecranon bursitis r/o septic joint	1
Clostridium difficile infection	1
Gastroenteritis/colitis	1
Dysmenorrhea	1

Skin and subcutaneous tissue (8%) Respiratory system (4.5%)

Circulatory system (0.3%)

Commercial Space Flight

Behavioral signs and symptoms (1.8%) Infectious diseases (1.3%) Genitorurinary system (1.5%)

194 events due to injury (including 14 fatalities)

- Endocrine, nutritional, metabolic & immunity disorders (0.1%)

SOURCE: Jon Clark, MD, Space Medicine Liaison, National Space Biomedical Research Institute, Baylor College of Medicine, Personal Communication, 2007

Federal Aviation Administration

Inflight Medical Events Among U.S. Astronauts 106 Space Shuttle Missions (Apr 1981 – Dec 2001) 607 Astronauts (521 men and 86 women) 5,496 Flight Days • 98.1% of men and 94.2% of women reported 2,207 medical events or symptoms during flight: Space adaptation syndrome (39.6%) Nervous system and sensory organs (16.7%) Digestive system (9.2%) Injuries and trauma (8.8%) Musculoskeletal system and connective tissues (8.2%) Federal Aviation Administration

Inflight Medical Events Among <u>U.S. Astronauts</u> during the NASA/MIR Program (Mar 95 – Jun 98)	
MEDICAL EVENT	FREQUENCY
Musculoskeletal	7
Skin	6
Nasal congestion, irritation	4
Bruise	2
Eyes	2
Gastrointestinal	2
Hemorrhoids	1
Psychiatric	2
Headaches	1
Sleep disorders	1

Inflight Medical Events Among Cosmonauts during the MIR Program (Feb 87 - Feb 96)

MEDICAL EVENT	FREQUENCY
Arrhythmia/conduction disorder	128
Superficial Injury	36
Musculoskeletal	29
Headache	24
Sleeplessness	19
Tiredness	14
Contact dermatitis	7

Conjunctivitis	6
Laryngitis	6
Asthenia	5
Erythema of face, hands	4
Acute respiratory infection	3
Surface burn, hands	3
Glossitis	3
Dry nose	2
Heartbrun /gas	2
Foreign body in eye	2
Dry skin	2
Hematoma	1
Constipation	1
Eye contusion	1
Dental caries	1
Wax in ear	1

Medical Findings Among Commercial Orbital Space Flight Participants

Dr. Gregory Olsen

- 57 year-old man with a history of <u>pneumothorax</u>, <u>moderately</u> severe emphysema, bilateral parenchymal bullae, <u>pulmonary</u> and mediastinal masses, and <u>ventricular</u> and atrial ectopy
- <u>Received preventive treatment</u> of these conditions, <u>including</u> <u>surgery</u> before being cleared to fly in space
- Completed medical evaluation in analog environments (<u>altitude</u> <u>chamber</u>, <u>high altitude mixed-gas simulation</u>, <u>zero-G flight</u>, and <u>high-G centrifuge</u>)

Jennings RT et al. "Medical Qualification of a Commercial Spaceflight Participant: Not Your Average Astronaut." Avial Space & Environ Med Journal, Volume 77, No. 5, May 2006. (Dr. Olsen released his medical data)

- Had no difficulties during the training and performed well during space flight
- Post-flight medical testing showed that he was in excellent condition and unchanged medically by the flight

Jennings RT et al. "Medical Qualification of a Commercial Spaceflight Participant: Not Your Average Astronaut." Aviat Space & Environ Med Journal, Volume 77, No. 5, May 2006. (Dr. Olsen released his medical data)

What is the impact of Dr. Olsen's decision to openly share his medical case?

Commercial Spaceflight Medical Researc

Federal Aviation Administration

Federal Aviation Administration

- <text><list-item><list-item>
- All medical information collected and archived in databases should be protected to ensure the individual medical-legal privacy rights of space flight participants
 Post-flight medical debriefs are highly recommended to collect critical medical data and to resolve and/or follow up any health issues resulting from space flight
 A practical tool to facilitate and standardize these post-flight medical debriefs would be a questionnaire

Federal Aviation Administration

Populations Impacted by Commercial Space Flights

Crews & Spaceflight Participants

Term bal handles Flight Crew Methical Standards and Space flight Participant Medical Acceptance Guidelines for Commercial Space Flight	R. Sineb, R. Bloe, C. Mathers, T. Castidberry, J. Vandieplerg (2017) Postdythnias in Largerson's During Centrifuge- Simulated Subsobial Specificiti'	R. Surek, R. Blue, C. Mathers, T. Cartleberry, J. Vanderplang (2017) "Sustained Activested Howeverirolata Rhythesis in a Centrifuge Simulated Subschital Spaceflight"	
Brownow or	B Direntour Hor	Strowerst Life	
term instantial R. Ellin, C. Senito, K. Seniton, A. Bubles, J. Vardimsan, C. Mathers, T. Costleberey, J. Vandespilorg, (2017) "The Effects of Training on Anxiety and Task Performance in Sinculated Subschildal Spaceflight"	Newfort Instant R. Mulcaky, R. Blue, J. Vardimen, Y. Castieberry, J. Vandergloeg, (2016) "Screening and Mitigation, of Lapperson Anxiety in Aerospace Environments"	Here be therefore H. Blue, E. Blacher, T. Castlobe ery, J. Vanderploeg, (2018) "Centrifuge- Simulated Schorbidal Spaceflight in Subjects with Cardine Malfeemation"	
Qilcontrat No.	D Generalized Phot	Discontract FOP	
near technology R. Bizo, D. Reyne, T. Castleberry, J. Vandar place, (2019) "Centrillogy Simulated Stobarbia Syster System Subjects with Cardiac Implanted Destces	Rose for Hosting R. Multashy, R. Blue, J. Vardiman, G. Mathew, T. Castleboury, J. Vander Joyce (2014) Tobject Anxiety and Psychological Considerations for Centraling- timulated Schenbrid Spaceflight	Here for Bandan R. Blar, J. Pattarini, D. Reyre, R. Mulicaliz, A. Garbino, C. Mallers, J. Vardima, T. Castle-erry, J. Vanderplase, (2014) "Tolarance of Generative-Simulated Subobial Speceffight ity Medical Condition"	
1290-weitend Mdf	2 (townload PDF	20context 10F	
B. Reyes, S. McClure, J. Chancellor, R. Bits, T. Datleberry, J. Vandrzpiseg, (2014) Implanted Medical Devices in the Radiation Eastmanned of Darmercial Spaceflight"			

sanobe i Isaotah 181. Modical and Physiological Database System	new but herefor 182. Human System Risk Management Approach to CST	tens in Abertige 183: Spaceflight Standards And Acceptance Crit	Norm for Absorbet 183: Space flight Crow Modical Standards And Participant Acceptance Criteria	
Othersday	8 Defirita	O Details	Director atoms	
285. Wearable Biemedical Monitoring Equipment for Spateflight Participants	nore Rold Jacoby 255. Centrifuge Testing/Testing and Training of Personnel and Hardware in High-C Profiles usin the NASTAR Center Centrifuge	294. Developme Soverity Scale f Space Flight	294. Development of Minor Injury Severity Scale for Orbital Human Space Flight	
O Details	O lettin	0	rtictada	
295. Effects of EMI and Ionizing Radiation on Implantable Devices	308. Subarbital SFP Anxiety Ascessment	309. Suborbital	Pilat Assessment	
O Centalia	O junits Dirakitation	e O Detala	D. resolutions	
210. Reducing Cabin Lethality in Commercial Spacecraft	400. Development of Commercial Space Occupational Medicine Health Standards	1		
Commercial Spaceflight Medical Research		Feder	ral Aviation	

Commercial space companies will have the opportunity to incorporate these guidelines into their operations and adjust them as appropriate to meet their individual flight parameters, safety standards and risk profiles

U.S. companies are required to inform spaceflight participants about the mission-related risk, but the specific risk of certain medical conditions has yet to be determined

The pilot medical standards and SFP guidelines included in this report are considered the minimum recommended and governmental agencies and operators have the option for additional medical and operational constraints

Workshop Proposal to Create a Human Research Roadmap for Addressing the Risks to Spaceflight Participants in the Commercialization of Space

> Michael Marge, Ed.D. Scientific and Technical Advisor Immediate Office of the Secretary U.S. Department of Health and Human Services

- Report with updated knowledge about impact of space travel on civilians in space.
 Updated knowledge may result in a current list of medical guidelines for civilians in
- Updated knowledge may result in a current list of medical guidelines for civilians in space
- Creation of a Human Research Program for SFPs in space (HRPSFP). Plan of coordinated research action with timetable by Federal and Private Sector parties for efficiency of effort and cost effectiveness
 The HRPSFP will result in meaningful findings and evidence in support of medical
- The HRPSFP will result in meaningful findings and evidence in support of medical guidelines for civilians in space that will be available to the space industry for adoption on a voluntary basis

Is it Risky to Fly in Space?

Yes, but risks vary Suborbital vs Orbital

Yes, but risks vary

Short Flights vs Long Flights

RISK FACTORS FOR THE OCCUPANTS OF SPACE VEHICLES

- 1. INDIVIDUAL FACTORS
- 2. EXTERNAL ENVIRONMENTAL FACTORS
- 3. OPERATIONAL FACTORS (Vehicle and Flight Operations)

Federal Aviation Administration

Federal Aviation

Federal Aviation Administration

RISK FACTORS FOR THE OCCUPANTS OF SPACE VEHICLES

- 1) INDIVIDUAL FACTORS:
- Unidentified or undisclosed pre-existing medical conditions
- Unexpected inflight medical emergencies (acute illnesses or trauma)
- Self-imposed stress (alcohol and drug use/abuse, nicotine addiction, self-medication, fatigue, dehydration, poor fitness, extreme overweight)

Federal Aviation Administration

RISK FACTORS FOR THE OCCUPANTS OF SPACE VEHICLES

1) INDIVIDUAL FACTORS:

- Space motion sickness
- Unknown or undisclosed pregnancy
- Undisclosed use of medications
- Disruptive passengers

RISK FACTORS FOR THE OCCUPANTS OF SPACE VEHICLES

2) EXTERNAL ENVIRONMENTAL FACTORS:

- -Weather (during the atmospheric phase of flight)
- Wildlife strikes

Commercial Space Flight

- Barometric pressure and decompression
- Ambient temperature extremes
- Ionizing and non-ionizing radiation
- Microgravity/weightlessness
- Space debris (natural and human-made)

ceflight Medical Research

IONIZING SOLAR AND GALACTIC COSMIC RADIATION

The main sources are geomagnetically trapped radiation, solar particle event radiation, and galactic cosmic radiation

The physiological changes resulting from exposure to microgravity depend upon the total duration of the exposure, and can vary in magnitude from individual to individual

> Federal Aviation Administration

RISK FACTORS FOR THE OCCUPANTS OF SPACE VEHICLES

- 3) OPERATIONAL FACTORS (Vehicle and Flight Operations):
- Type of acceleration profile (take off/launch, cruise, landing) and relative position of the occupants during acceleration exposure
- Type of flight profile (ascent rate, maximum altitude, descent rate, duration of the flight)
- Cabin/suit pressurization profile
- Noise/vibration exposure during flight

November 15, 1967

- Michael J. Adams
- Electrical problems
- Enters a Mach 5 spin @ 260,000ft
- 15Gz and 8Gy forces
- · History of 'vertigo' on previous flight
- End of X-15 program

17 Jan 1969

- Soyuz 4 and 5 rendezvous and transfer of 2 cosmonauts
- Boris Volynov (5), Alexei Yeliseyev and Yevgeny Khrunov (5 to 4), Vladimir Shatalov (4)
- Incomplete separation of Soyuz-5 equipment module on reentry
- Soyuz-5 Descent module descends nose-first with inadequate heat ding
- Tumbling with a 9G trajectory
- Partial deployment of primary parachute Near-fatal landing several miles off-course
- Volynov staggers to a nearby peasant hut in -40°C, without a space suit Survives with loss of few teeth

Noise is produced by rocket propulsion systems, thrusters, hydraulic and electrical actuators, cabin air conditioning and pressurization systems, cockpit advisory and alert systems, communications equipment, motors, fans, pumps, transformers, oscillators, etc

Noise can also be caused by the aerodynamic interaction between ambient air (boundary layer) and the surface of the space vehicle during the atmospheric portion of the flight

Federal Aviation Administration

Federal Aviation Administration

Vibration is transmitted throughout the entire body

Vibration exposure usually occurs during the launch and atmospheric entry phases of a space flight, or while using the thrusters

Other sources of inflight vibration include motors, pumps, and other mechanical equipment

Federal Aviation Administration

RISK FACTORS FOR THE OCCUPANTS OF SPACE VEHICLES

- 2) OPERATIONAL FACTORS (Vehicle and Flight Operations):
- Breathing air (composition, contaminants, CO₂ removal, volume per occupant)
- Cabin/suit temperature and humidity
- Impact/crash exposure (structural integrity or crashworthiness, occupant restraint systems, personal protective equipment, emergency evacuation systems, etc.) and survival

15

April 1970

- Apollo-XIII
- Lovell/Haise/Sweigert
- Explosion in service module
- Limited O2/Mission aborted
- Dehydration UTI Fatigue 1 CO2

- In the sealed cabin environment of a space vehicle there are several potential risks including the presence of biological, chemical and particulate contaminants
- Carbon dioxide released by all occupants during exhalation could accumulate and become a breathing hazard especially during sleep due to lack of convective air circulation
- Breathing 100% oxygen (instead of a gas mixture) at sea level pressure for prolonged periods of time could cause reduced vital capacity, respiratory disturbances, heart problems, blindness, and loss of consciousness

- <u>Odors</u> are known to cause symptoms such as nausea, nasal congestion, coughing, headaches and irritability
- The most common sources of odor onboard a space vehicle are <u>sweat, food,</u> and organic waste

Federal Aviation Administration TEMPERATURE

The <u>lack of an atmosphere</u> in space exposes space vehicles to <u>extremely cold and hot ambient</u> <u>temperatures</u> that vary depending upon the effective surface area of the vehicle that is directly exposed to radiant heat coming from the sun

A space vehicle is exposed to high levels of aerodynamic heat produced during the atmospheric entry

These temperature extremes represent a potential hazard for all vehicle occupants, who must rely on the proper operation of the cabin heating, air circulation, and cooling systems

These systems must maintain the right balance between air temperature, air velocity, barometric pressure, and humidity

RISK FACTORS FOR THE OCCUPANTS OF SPACE VEHICLES

- 2) OPERATIONAL FACTORS (Vehicle and Flight Operations):
- Physical hazards (electrical, chemical, thermal) of the cabin
- Injuries due to accidental contact with internal structures or objects especially during microgravity
- Inflight fire (fire retardant materials, toxic materials, fire suppression systems)

Federal Aviation Administration

Apollo 1 Astronauts Gus Grissom, Edward White and Roger Chaffee died when a fire blazed their command module during a ground test at KSC.

Certificate issued by an Aviation Medical Examiner (AME) and reviewed by the Aerospace Medical Certification Division at _____CAMI_

FAA's philosophy is different than NASA's on the determination of medical fitness for flight

Main Risk Factors Relevant to the Development of Guidelines for Medical Screening of Commercial Space Passengers

- Exposure to <u>acceleration/deceleration</u>
- Exposure to decreased barometric pressure
- Exposure to microgravity

Commercial Space Flight

• Exposure to radiation (solar and cosmic)

Guidance for Medical Screening of Passengers on <u>Suborbital Flights</u> or Exposed to a G-Load of up to +3Gz During any Phase of the Flight.

Commercial Space Flight

Federal Aviation

Any deformities (congenital or acquired), diseases, illnesses, injuries, infections, tumors, treatments (pharmacological, surgical, prosthetic, or other), or other physiological or pathological conditions that may:

- Result in an in-flight <u>death</u> Result in an in-flight <u>medical emergency</u> 2)
- 3) Interfere with the proper use (don and doff) and operation of personal protective equipment Interfere with in-flight emergency procedures or emergency evacuation
- 4) Compromise the health and safety of the passenger or other space vehicle occupants, and/or the safety of the flight 5

Federal Aviation

Other Considerations · Some medical conditions may be cleared for space flight following special medical assessments in simulated spaceflight environments including the use of a zero-G aircraft, a high performance aircraft, a hypobaric (altitude) chamber, or a human centrifuge Using a flexible approach that applies aerospace medicine knowledge and experience-based medical risk analysis, it may be possible to permit special med accommodations for prospective participants who have certain pathologies (including disabilities) Federal Aviation Administration Commercial Space Flight

<u>Tasks</u>

- 1. Represent and guide a local school group for an ISS related project
- 2. Direct spaceport focused content creation at a local science institution
- 3. Curate on-line STEM content and provide on-line "clearinghouse" for teachers
- 4. Guide local school group in a cubesat competition for the Teachers-in-Space program
- 5. Provide global connection for school groups to spaceports represented by the Working Group

